New Year Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

ANS-C01 Exam Dumps - Amazon AWS Certified Advanced Networking - Specialty

Go to page:
Question # 25

A network engineer needs to set up an Amazon EC2 Auto Scaling group to run a Linux-based network appliance in a highly available architecture. The network engineer is configuring the new launch template for the Auto Scaling group.

In addition to the primary network interface the network appliance requires a second network interface that will be used exclusively by the application to exchange traffic with hosts over the internet. The company has set up a Bring Your Own IP (BYOIP) pool that includes an Elastic IP address that should be used as the public IP address for the second network interface.

How can the network engineer implement the required architecture?

A.

Configure the two network interfaces in the launch template. Define the primary network interface to be created in one of the private subnets. For the second network interface, select one of the public subnets. Choose the BYOIP pool ID as the source of public IP addresses.

B.

Configure the primary network interface in a private subnet in the launch template. Use the user data option to run a cloud-init script after boot to attach the second network interface from a subnet with auto-assign public IP addressing enabled.

C.

Create an AWS Lambda function to run as a lifecycle hook of the Auto Scaling group when an instance is launching. In the Lambda function, assign a network interface to an AWS Global Accelerator endpoint.

D.

During creation of the Auto Scaling group, select subnets for the primary network interface. Use the user data option to run a cloud-init script to allocate a second network interface and to associate an Elastic IP address from the BYOIP pool.

Full Access
Question # 26

A global company runs business applications in the us-east-1 Region inside a VPC. One of the company's regional offices in London uses a virtual private gateway for an AWS Site-to-Site VPN connection tom the VPC. The company has configured a transit gateway and has set up peering between the VPC and other VPCs that various departments in the company use.

Employees at the London office are experiencing latency issues when they connect to the business applications.

What should a network engineer do to reduce this latency?

A.

Create a new Site-to-Site VPN connection. Set the transit gateway as the target gateway. Enable acceleration on the new Site-to-Site VPN connection. Update the VPN device in the London office with the new connection details.

B.

Modify the existing Site-to-Site VPN connection by setting the transit gateway as the target gateway. Enable acceleration on the existing Site-to-Site VPN connection.

C.

Create a new transit gateway in the eu-west-2 (London) Region. Peer the new transit gateway with the existing transit gateway. Modify the existing Site-to-Site VPN connection by setting the new transit gateway as the target gateway.

D.

Create a new AWS Global Accelerator standard accelerator that has an endpoint of the Site-to-Site VPN connection. Update the VPN device in the London office with the new connection details.

Full Access
Question # 27

A network engineer must provide additional safeguards to protect encrypted data at Application Load Balancers (ALBs) through the use of a unique random session key.

What should the network engineer do to meet this requirement?

A.

Change the ALB security policy to a policy that supports TLS 1.2 protocol only

B.

Use AWS Key Management Service (AWS KMS) to encrypt session keys

C.

Associate an AWS WAF web ACL with the ALBs. and create a security rule to enforce forward secrecy (FS)

D.

Change the ALB security policy to a policy that supports forward secrecy (FS)

Full Access
Question # 28

Your company runs an application for the US market in the us-east-1 AWS region. This application uses proprietary TCP and UDP protocols on Amazon Elastic Compute Cloud (EC2) instances. End users run a real-time, front-end application on their local PCs. This front-end application knows the DNS hostname of the service.

You must prepare the system for global expansion. The end users must access the application with lowest latency.

How should you use AWS services to meet these requirements?

A.

Register the IP addresses of the service hosts as “A” records with latency-based routing policy in Amazon Route 53, and set a Route 53 health check for these hosts.

B.

Set the Elastic Load Balancing (ELB) load balancer in front of the hosts of the service, and register the ELB name of the main service host as an ALIAS record with a latency-based routing policy in Route 53.

C.

Set Amazon CloudFront in front of the host of the service, and register the CloudFront name of the main service as an ALIAS record in Route 53.

D.

Set the Amazon API gateway in front of the service, and register the API gateway name of the main service as an ALIAS record in Route 53.

Full Access
Question # 29

A company is migrating an existing application to a new AWS account. The company will deploy the application in a single AWS Region by using one VPC and multiple Availability Zones. The application will run on Amazon EC2 instances. Each Availability Zone will have several EC2 instances. The EC2 instances will be deployed in private subnets.

The company's clients will connect to the application by using a web browser with the HTTPS protocol. Inbound connections must be distributed across the Availability Zones and EC2 instances. All connections from the same client session must be connected to the same EC2 instance. The company must provide end-to-end encryption for all connections between the clients and the application by using the application SSL certificate.

Which solution will meet these requirements?

A.

Create a Network Load Balancer. Create a target group. Set the protocol to TCP and the port to 443 for the target group. Turn on session affinity (sticky sessions). Register the EC2 instances as targets. Create a listener. Set the protocol to TCP and the port to 443 for the listener. Deploy SSL certificates to the EC2 instances.

B.

Create an Application Load Balancer. Create a target group. Set the protocol to HTTP and the port to 80 for the target group. Turn on session affinity (sticky sessions) with an application-based cookie policy. Register the EC2 instances as targets. Create an HTTPS listener. Set the default action to forward to the target group. Use AWS Certificate Manager (ACM) to create a certificate for the listener.

C.

Create a Network Load Balancer. Create a target group. Set the protocol to TLS and the port to 443 for the target group. Turn on session affinity (sticky sessions). Register the EC2 instances as targets. Create a listener. Set the protocol to TLS and the port to 443 for the listener. Use AWS Certificate Manager (ACM) to create a certificate for the application.

D.

Create an Application Load Balancer. Create a target group. Set the protocol to HTTPS and the port to 443 for the target group. Turn on session affinity (sticky sessions) with an application-based cookie policy. Register the EC2 instances as targets. Create an HTTP listener. Set the port to 443 for the listener. Set the default action to forward to the target group.

Full Access
Question # 30

A development team is building a new web application in the AWS Cloud. The main company domain, example.com. is currently hosted in an Amazon Route 53 public hosted zone in one of the company's production AWS accounts.

The developers want to test the web application in the company's staging AWS account by using publicly resolvable subdomains under the example.com domain with the ability to create and delete DNS records as needed. Developers have full access to Route 53 hosted zones within the staging account, but they are prohibited from accessing resources in any of the production AWS accounts.

Which combination of steps should a network engineer take to allow the developers to create records under the example.com domain? (Select TWO.)

A.

Create a public hosted zone for example.com in the staging account.

B.

Create a staging.example.com NS record in the example.com domain. Populate the value with the name servers from the staging.example.com domain. Set the routing policy type to simple routing.

C.

Create a private hosted zone for stagmg.example.com in the staging account.

D.

Create an example.com NS record in the staging.example.com domain. Populate the value with the name servers from the example.com domain. Set the routing policy type to simple routing

E.

Create a public hosted zone for staging.example.com in the staging account.

Full Access
Question # 31

A company has a VPC in the AWS Cloud. The company recently acquired a competitor that also has a VPC in the AWS Cloud. A network engineer discovers an IP address overlap between the two VPCs. Both VPCs require access to an AWS Marketplace partner service.

Which solution will ensure interoperability among the VPC hosted services and the AWS Marketplace partner service?

A.

Configure VPC peering with static routing between the VPCs. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

B.

Configure a NAT gateway in the VPCs. Configure default routes in each VPC to point to the local NAT gateway. Attach each NAT gateway to a transit gateway. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

C.

Configure AWS PrivateLink to facilitate connectivity between the VPCs and the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

D.

Configure a NAT instance in the VPCs. Configure default routes in each VPC to point to the local NAT instance. Configure an interface endpoint in each VPC to connect to the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

Full Access
Question # 32

A banking company is successfully operating its public mobile banking stack on AWS. The mobile banking stack is deployed in a VPC that includes private subnets and public subnets. The company is using IPv4 networking and has not deployed or supported IPv6 in the environment. The company has decided to adopt a third-party service provider's API and must integrate the API with the existing environment. The service provider’s API requires the use of IPv6.

A network engineer must turn on IPv6 connectivity for the existing workload that is deployed in a private subnet. The company does not want to permit IPv6 traffic from the public internet and mandates that the company's servers must initiate all IPv6 connectivity. The network engineer turns on IPv6 in the VPC and in the private subnets.

Which solution will meet these requirements?

A.

Create an internet gateway and a NAT gateway in the VPC. Add a route to the existing subnet route tables to point IPv6 traffic to the NAT gateway.

B.

Create an internet gateway and a NAT instance in the VPC. Add a route to the existing subnet route tables to point IPv6 traffic to the NAT instance.

C.

Create an egress-only Internet gateway in the VPAdd a route to the existing subnet route tables to point IPv6 traffic to the egress-only internet gateway.

D.

Create an egress-only internet gateway in the VPC. Configure a security group that denies all inbound traffic. Associate the security group with the egress-only internet gateway.

Full Access
Go to page: