Consider a natural language processing (NLP) algorithm that attempts to predict the next word that you would like to type in a text message. An update to the algorithm has been created that should increase the accuracy of the predictions based on user typing patterns. The old algorithm was rated for accuracy by the users. Then, after the new update was released, the users rated the updated algorithm. A statistical test was used to compare between the two versions of the algorithm to see whether or not the update should remain in place.
This is an example of what type of testing?
An airline has created a ML model to project fuel requirements for future flights. The model imports weather data such as wind speeds and temperatures, calculates flight routes based on historical routings from air traffic control, and estimates loads from average passenger and baggage weights. The model performed within an acceptable standard for the airline throughout the summer but as winter set in the load weights became less accurate. After some exploratory data analysis it became apparent that luggage weights were higher in the winter than in summer.
Which of the following statements BEST describes the problem and how it could have been prevented?
Which of the following problems would best be solved using the supervised learning category of regression?
Which ONE of the following options BEST DESCRIBES clustering?
SELECT ONE OPTION
Which ONE of the following tests is MOST likely to describe a useful test to help detect different kinds of biases in ML pipeline?
SELECT ONE OPTION