New Year Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

MLS-C01 Exam Dumps - AWS Certified Machine Learning - Specialty

Go to page:
Question # 9

A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.

The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist needs to reduce the number of false negatives.

Which combination of steps should the Data Scientist take to reduce the number of false negative predictions by the model? (Choose two.)

A.

Change the XGBoost eval_metric parameter to optimize based on Root Mean Square Error (RMSE).

B.

Increase the XGBoost scale_pos_weight parameter to adjust the balance of positive and negative weights.

C.

Increase the XGBoost max_depth parameter because the model is currently underfitting the data.

D.

Change the XGBoost eval_metric parameter to optimize based on Area Under the ROC Curve (AUC).

E.

Decrease the XGBoost max_depth parameter because the model is currently overfitting the data.

Full Access
Question # 10

A Data Scientist received a set of insurance records, each consisting of a record ID, the final outcome among 200 categories, and the date of the final outcome. Some partial information on claim contents is also provided, but only for a few of the 200 categories. For each outcome category, there are hundreds of records distributed over the past 3 years. The Data Scientist wants to predict how many claims to expect in each category from month to month, a few months in advance.

What type of machine learning model should be used?

A.

Classification month-to-month using supervised learning of the 200 categories based on claim contents.

B.

Reinforcement learning using claim IDs and timestamps where the agent will identify how many claims in each category to expect from month to month.

C.

Forecasting using claim IDs and timestamps to identify how many claims in each category to expect from month to month.

D.

Classification with supervised learning of the categories for which partial information on claim contents is provided, and forecasting using claim IDs and timestamps for all other categories.

Full Access
Question # 11

A company supplies wholesale clothing to thousands of retail stores. A data scientist must create a model that predicts the daily sales volume for each item for each store. The data scientist discovers that more than half of the stores have been in business for less than 6 months. Sales data is highly consistent from week to week. Daily data from the database has been aggregated weekly, and weeks with no sales are omitted from the current dataset. Five years (100 MB) of sales data is available in Amazon S3.

Which factors will adversely impact the performance of the forecast model to be developed, and which actions should the data scientist take to mitigate them? (Choose two.)

A.

Detecting seasonality for the majority of stores will be an issue. Request categorical data to relate new stores with similar stores that have more historical data.

B.

The sales data does not have enough variance. Request external sales data from other industries to improve the model's ability to generalize.

C.

Sales data is aggregated by week. Request daily sales data from the source database to enable building a daily model.

D.

The sales data is missing zero entries for item sales. Request that item sales data from the source database include zero entries to enable building the model.

E.

Only 100 MB of sales data is available in Amazon S3. Request 10 years of sales data, which would provide 200 MB of training data for the model.

Full Access
Question # 12

An online store is predicting future book sales by using a linear regression model that is based on past sales data. The data includes duration, a numerical feature that represents the number of days that a book has been listed in the online store. A data scientist performs an exploratory data analysis and discovers that the relationship between book sales and duration is skewed and non-linear.

Which data transformation step should the data scientist take to improve the predictions of the model?

A.

One-hot encoding

B.

Cartesian product transformation

C.

Quantile binning

D.

Normalization

Full Access
Question # 13

A Machine Learning Specialist is building a supervised model that will evaluate customers' satisfaction with their mobile phone service based on recent usage The model's output should infer whether or not a customer is likely to switch to a competitor in the next 30 days

Which of the following modeling techniques should the Specialist use1?

A.

Time-series prediction

B.

Anomaly detection

C.

Binary classification

D.

Regression

Full Access
Question # 14

A company has video feeds and images of a subway train station. The company wants to create a deep learning model that will alert the station manager if any passenger crosses the yellow safety line when there is no train in the station. The alert will be based on the video feeds. The company wants the model to detect the yellow line, the passengers who cross the yellow line, and the trains in the video feeds. This task requires labeling. The video data must remain confidential.

A data scientist creates a bounding box to label the sample data and uses an object detection model. However, the object detection model cannot clearly demarcate the yellow line, the passengers who cross the yellow line, and the trains.

Which labeling approach will help the company improve this model?

A.

Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a private workforce. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.

B.

Use an Amazon SageMaker Ground Truth object detection labeling task. Use Amazon Mechanical Turk as the labeling workforce.

C.

Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a workforce with a third-party AWS Marketplace vendor. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.

D.

Use an Amazon SageMaker Ground Truth semantic segmentation labeling task. Use a private workforce as the labeling workforce.

Full Access
Question # 15

A health care company is planning to use neural networks to classify their X-ray images into normal and abnormal classes. The labeled data is divided into a training set of 1,000 images and a test set of 200 images. The initial training of a neural network model with 50 hidden layers yielded 99% accuracy on the training set, but only 55% accuracy on the test set.

What changes should the Specialist consider to solve this issue? (Choose three.)

A.

Choose a higher number of layers

B.

Choose a lower number of layers

C.

Choose a smaller learning rate

D.

Enable dropout

E.

Include all the images from the test set in the training set

F.

Enable early stopping

Full Access
Question # 16

A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.

The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.

The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.

Which solution will meet these requirements?

A.

Perform classification every month by using supervised learning of the 20X3 outcome categories based on claim contents.

B.

Perform reinforcement learning by using claim IDs and dates Instruct the insurance agents who submit the claim records to estimate the expected number of claims in each outcome category every month

C.

Perform forecasting by using claim IDs and dates to identify the expected number ot claims in each outcome category every month.

D.

Perform classification by using supervised learning of the outcome categories for which partial information on claim contents is provided. Perform forecasting by using claim IDs and dates for all other outcome categories.

Full Access
Go to page: