11.11 Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Databricks-Generative-AI-Engineer-Associate Exam Dumps - Databricks Certified Generative AI Engineer Associate

Question # 4

A Generative Al Engineer has developed an LLM application to answer questions about internal company policies. The Generative AI Engineer must ensure that the application doesn’t hallucinate or leak confidential data.

Which approach should NOT be used to mitigate hallucination or confidential data leakage?

A.

Add guardrails to filter outputs from the LLM before it is shown to the user

B.

Fine-tune the model on your data, hoping it will learn what is appropriate and not

C.

Limit the data available based on the user’s access level

D.

Use a strong system prompt to ensure the model aligns with your needs.

Full Access
Question # 5

A Generative AI Engineer received the following business requirements for an external chatbot.

The chatbot needs to know what types of questions the user asks and routes to appropriate models to answer the questions. For example, the user might ask about upcoming event details. Another user might ask about purchasing tickets for a particular event.

What is an ideal workflow for such a chatbot?

A.

The chatbot should only look at previous event information

B.

There should be two different chatbots handling different types of user queries.

C.

The chatbot should be implemented as a multi-step LLM workflow. First, identify the type of question asked, then route the question to the appropriate model. If it’s an upcoming event question, send the query to a text-to-SQL model. If it’s about ticket purchasing, the customer should be redirected to a payment platform.

D.

The chatbot should only process payments

Full Access
Question # 6

A Generative AI Engineer is testing a simple prompt template in LangChain using the code below, but is getting an error.

Assuming the API key was properly defined, what change does the Generative AI Engineer need to make to fix their chain?

A)

B)

C)

D)

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Full Access
Question # 7

A Generative AI Engineer is developing a patient-facing healthcare-focused chatbot. If the patient’s question is not a medical emergency, the chatbot should solicit more information from the patient to pass to the doctor’s office and suggest a few relevant pre-approved medical articles for reading. If the patient’s question is urgent, direct the patient to calling their local emergency services.

Given the following user input:

“I have been experiencing severe headaches and dizziness for the past two days.”

Which response is most appropriate for the chatbot to generate?

A.

Here are a few relevant articles for your browsing. Let me know if you have questions after reading them.

B.

Please call your local emergency services.

C.

Headaches can be tough. Hope you feel better soon!

D.

Please provide your age, recent activities, and any other symptoms you have noticed along with your headaches and dizziness.

Full Access
Question # 8

A Generative Al Engineer is creating an LLM system that will retrieve news articles from the year 1918 and related to a user's query and summarize them. The engineer has noticed that the summaries are generated well but often also include an explanation of how the summary was generated, which is undesirable.

Which change could the Generative Al Engineer perform to mitigate this issue?

A.

Split the LLM output by newline characters to truncate away the summarization explanation.

B.

Tune the chunk size of news articles or experiment with different embedding models.

C.

Revisit their document ingestion logic, ensuring that the news articles are being ingested properly.

D.

Provide few shot examples of desired output format to the system and/or user prompt.

Full Access
Question # 9

A Generative Al Engineer interfaces with an LLM with prompt/response behavior that has been trained on customer calls inquiring about product availability. The LLM is designed to output “In Stock” if the product is available or only the term “Out of Stock” if not.

Which prompt will work to allow the engineer to respond to call classification labels correctly?

A.

Respond with “In Stock” if the customer asks for a product.

B.

You will be given a customer call transcript where the customer asks about product availability. The outputs are either “In Stock” or “Out of Stock”. Format the output in JSON, for example: {“call_id”: “123”, “label”: “In Stock”}.

C.

Respond with “Out of Stock” if the customer asks for a product.

D.

You will be given a customer call transcript where the customer inquires about product availability. Respond with “In Stock” if the product is available or “Out of Stock” if not.

Full Access
Question # 10

What is the most suitable library for building a multi-step LLM-based workflow?

A.

Pandas

B.

TensorFlow

C.

PySpark

D.

LangChain

Full Access
Question # 11

A Generative AI Engineer is building an LLM to generate article summaries in the form of a type of poem, such as a haiku, given the article content. However, the initial output from the LLM does not match the desired tone or style.

Which approach will NOT improve the LLM’s response to achieve the desired response?

A.

Provide the LLM with a prompt that explicitly instructs it to generate text in the desired tone and style

B.

Use a neutralizer to normalize the tone and style of the underlying documents

C.

Include few-shot examples in the prompt to the LLM

D.

Fine-tune the LLM on a dataset of desired tone and style

Full Access
Question # 12

A Generative AI Engineer is designing a RAG application for answering user questions on technical regulations as they learn a new sport.

What are the steps needed to build this RAG application and deploy it?

A.

Ingest documents from a source –> Index the documents and saves to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> Evaluate model –> LLM generates a response –> Deploy it using Model Serving

B.

Ingest documents from a source –> Index the documents and save to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> LLM generates a response -> Evaluate model –> Deploy it using Model Serving

C.

Ingest documents from a source –> Index the documents and save to Vector Search –> Evaluate model –> Deploy it using Model Serving

D.

User submits queries against an LLM –> Ingest documents from a source –> Index the documents and save to Vector Search –> LLM retrieves relevant documents –> LLM generates a response –> Evaluate model –> Deploy it using Model Serving

Full Access
Question # 13

A Generative AI Engineer is designing a chatbot for a gaming company that aims to engage users on its platform while its users play online video games.

Which metric would help them increase user engagement and retention for their platform?

A.

Randomness

B.

Diversity of responses

C.

Lack of relevance

D.

Repetition of responses

Full Access