Special Summer Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Databricks-Generative-AI-Engineer-Associate Exam Dumps - Databricks Certified Generative AI Engineer Associate

Go to page:
Question # 4

A Generative AI Engineer developed an LLM application using the provisioned throughput Foundation Model API. Now that the application is ready to be deployed, they realize their volume of requests are not sufficiently high enough to create their own provisioned throughput endpoint. They want to choose a strategy that ensures the best cost-effectiveness for their application.

What strategy should the Generative AI Engineer use?

A.

Switch to using External Models instead

B.

Deploy the model using pay-per-token throughput as it comes with cost guarantees

C.

Change to a model with a fewer number of parameters in order to reduce hardware constraint issues

D.

Throttle the incoming batch of requests manually to avoid rate limiting issues

Full Access
Question # 5

A Generative Al Engineer has built an LLM-based system that will automatically translate user text between two languages. They now want to benchmark multiple LLM's on this task and pick the best one. They have an evaluation set with known high quality translation examples. They want to evaluate each LLM using the evaluation set with a performant metric.

Which metric should they choose for this evaluation?

A.

ROUGE metric

B.

BLEU metric

C.

NDCG metric

D.

RECALL metric

Full Access
Question # 6

A Generative AI Engineer is testing a simple prompt template in LangChain using the code below, but is getting an error.

Assuming the API key was properly defined, what change does the Generative AI Engineer need to make to fix their chain?

A)

B)

C)

D)

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Full Access
Question # 7

A Generative Al Engineer has developed an LLM application to answer questions about internal company policies. The Generative AI Engineer must ensure that the application doesn’t hallucinate or leak confidential data.

Which approach should NOT be used to mitigate hallucination or confidential data leakage?

A.

Add guardrails to filter outputs from the LLM before it is shown to the user

B.

Fine-tune the model on your data, hoping it will learn what is appropriate and not

C.

Limit the data available based on the user’s access level

D.

Use a strong system prompt to ensure the model aligns with your needs.

Full Access
Question # 8

A Generative Al Engineer is responsible for developing a chatbot to enable their company’s internal HelpDesk Call Center team to more quickly find related tickets and provide resolution. While creating the GenAI application work breakdown tasks for this project, they realize they need to start planningwhich data sources (either Unity Catalog volume or Delta table) they could choose for this application. They have collected several candidate data sources for consideration:

call_rep_history: a Delta table with primary keys representative_id, call_id. This table is maintained to calculate representatives’ call resolution from fields call_duration and call start_time.

transcript Volume: a Unity Catalog Volume of all recordings as a *.wav files, but also a text transcript as *.txt files.

call_cust_history: a Delta table with primary keys customer_id, cal1_id. This table is maintained to calculate how much internal customers use the HelpDesk to make sure that the charge back model is consistent with actual service use.

call_detail: a Delta table that includes a snapshot of all call details updated hourly. It includes root_cause and resolution fields, but those fields may be empty for calls that are still active.

maintenance_schedule – a Delta table that includes a listing of both HelpDesk application outages as well as planned upcoming maintenance downtimes.

They need sources that could add context to best identify ticket root cause and resolution.

Which TWO sources do that? (Choose two.)

A.

call_cust_history

B.

maintenance_schedule

C.

call_rep_history

D.

call_detail

E.

transcript Volume

Full Access
Go to page: