Month End Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Professional-Data-Engineer Exam Dumps - Google Professional Data Engineer Exam

Go to page:
Question # 49

Which Google Cloud Platform service is an alternative to Hadoop with Hive?

A.

Cloud Dataflow

B.

Cloud Bigtable

C.

BigQuery

D.

Cloud Datastore

Full Access
Question # 50

You need to look at BigQuery data from a specific table multiple times a day. The underlying table you are querying is several petabytes in size, but you want to filter your data and provide simple aggregations to downstream users. You want to run queries faster and get up-to-date insights quicker. What should you do?

A.

Run a scheduled query to pull the necessary data at specific intervals daily.

B.

Create a materialized view based off of the query being run.

C.

Use a cached query to accelerate time to results.

D.

Limit the query columns being pulled in the final result.

Full Access
Question # 51

You have a job that you want to cancel. It is a streaming pipeline, and you want to ensure that any data that is in-flight is processed and written to the output. Which of the following commands can you use on the Dataflow monitoring console to stop the pipeline job?

A.

Cancel

B.

Drain

C.

Stop

D.

Finish

Full Access
Question # 52

Which of the following statements about Legacy SQL and Standard SQL is not true?

A.

Standard SQL is the preferred query language for BigQuery.

B.

If you write a query in Legacy SQL, it might generate an error if you try to run it with Standard SQL.

C.

One difference between the two query languages is how you specify fully-qualified table names (i.e. table names that include their associated project name).

D.

You need to set a query language for each dataset and the default is Standard SQL.

Full Access
Question # 53

Which methods can be used to reduce the number of rows processed by BigQuery?

A.

Splitting tables into multiple tables; putting data in partitions

B.

Splitting tables into multiple tables; putting data in partitions; using the LIMIT clause

C.

Putting data in partitions; using the LIMIT clause

D.

Splitting tables into multiple tables; using the LIMIT clause

Full Access
Question # 54

Which is not a valid reason for poor Cloud Bigtable performance?

A.

The workload isn't appropriate for Cloud Bigtable.

B.

The table's schema is not designed correctly.

C.

The Cloud Bigtable cluster has too many nodes.

D.

There are issues with the network connection.

Full Access
Question # 55

For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?

A.

Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.

B.

Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.

C.

Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.

D.

Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.

Full Access
Question # 56

Which is the preferred method to use to avoid hotspotting in time series data in Bigtable?

A.

Field promotion

B.

Randomization

C.

Salting

D.

Hashing

Full Access
Go to page: