You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?
Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?
You are designing a system that requires an ACID-compliant database. You must ensure that the system requires minimal human intervention in case of a failure. What should you do?
You need to copy millions of sensitive patient records from a relational database to BigQuery. The total size of the database is 10 TB. You need to design a solution that is secure and time-efficient. What should you do?
You are administering a BigQuery dataset that uses a customer-managed encryption key (CMEK). You need to share the dataset with a partner organization that does not have access to your CMEK. What should you do?
Your company is migrating its on-premises data warehousing solution to BigQuery. The existing data warehouse uses trigger-based change data capture (CDC) to apply daily updates from transactional database sources Your company wants to use BigQuery to improve its handling of CDC and to optimize the performance of the data warehouse Source system changes must be available for query m near-real time using tog-based CDC streams You need to ensure that changes in the BigQuery reporting table are available with minimal latency and reduced overhead. What should you do? Choose 2 answers
You have a table that contains millions of rows of sales data, partitioned by date Various applications and users query this data many times a minute. The query requires aggregating values by using avg. max. and sum, and does not require joining to other tables. The required aggregations are only computed over the past year of data, though you need to retain full historical data in the base tables You want to ensure that the query results always include the latest data from the tables, while also reducing computation cost, maintenance overhead, and duration. What should you do?
You currently use a SQL-based tool to visualize your data stored in BigQuery The data visualizations require the use of outer joins and analytic functions. Visualizations must be based on data that is no less than 4 hours old. Business users are complaining that the visualizations are too slow to generate. You want to improve the performance of the visualization queries while minimizing the maintenance overhead of the data preparation pipeline. What should you do?