Month End Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Professional-Data-Engineer Exam Dumps - Google Professional Data Engineer Exam

Go to page:
Question # 25

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Full Access
Question # 26

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Full Access
Question # 27

You are designing a system that requires an ACID-compliant database. You must ensure that the system requires minimal human intervention in case of a failure. What should you do?

A.

Configure a Cloud SQL for MySQL instance with point-in-time recovery enabled.

B.

Configure a Cloud SQL for PostgreSQL instance with high availability enabled.

C.

Configure a Bigtable instance with more than one cluster.

D.

Configure a BJgQuery table with a multi-region configuration.

Full Access
Question # 28

You need to copy millions of sensitive patient records from a relational database to BigQuery. The total size of the database is 10 TB. You need to design a solution that is secure and time-efficient. What should you do?

A.

Export the records from the database as an Avro file. Upload the file to GCS using gsutil, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

B.

Export the records from the database as an Avro file. Copy the file onto a Transfer Appliance and send it to Google, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

C.

Export the records from the database into a CSV file. Create a public URL for the CSV file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the CSV file into BigQuery using the BigQuery web UI in the GCP Console.

D.

Export the records from the database as an Avro file. Create a public URL for the Avro file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

Full Access
Question # 29

You are administering a BigQuery dataset that uses a customer-managed encryption key (CMEK). You need to share the dataset with a partner organization that does not have access to your CMEK. What should you do?

A.

Create an authorized view that contains the CMEK to decrypt the data when accessed.

B.

Provide the partner organization a copy of your CMEKs to decrypt the data.

C.

Copy the tables you need to share to a dataset without CMEKs Create an Analytics Hub listing for this dataset.

D.

Export the tables to parquet files to a Cloud Storage bucket and grant the storageinsights. viewer role on the bucket to the partner organization.

Full Access
Question # 30

Your company is migrating its on-premises data warehousing solution to BigQuery. The existing data warehouse uses trigger-based change data capture (CDC) to apply daily updates from transactional database sources Your company wants to use BigQuery to improve its handling of CDC and to optimize the performance of the data warehouse Source system changes must be available for query m near-real time using tog-based CDC streams You need to ensure that changes in the BigQuery reporting table are available with minimal latency and reduced overhead. What should you do? Choose 2 answers

A.

Perform a DML INSERT UPDATE, or DELETE to replicate each CDC record in the reporting table m real time.

B.

Periodically DELETE outdated records from the reporting table

Periodically use a DML MERGE to simultaneously perform DML INSERT. UPDATE, and DELETE operations in the reporting table

C.

Insert each new CDC record and corresponding operation type into a staging table in real time

D.

Insert each new CDC record and corresponding operation type into the reporting table in real time and use a materialized view to expose only the current version of each unique record.

Full Access
Question # 31

You have a table that contains millions of rows of sales data, partitioned by date Various applications and users query this data many times a minute. The query requires aggregating values by using avg. max. and sum, and does not require joining to other tables. The required aggregations are only computed over the past year of data, though you need to retain full historical data in the base tables You want to ensure that the query results always include the latest data from the tables, while also reducing computation cost, maintenance overhead, and duration. What should you do?

A.

Create a materialized view to aggregate the base table data Configure a partition expiration on the base table to retain only the last one year of partitions.

B.

Create a materialized view to aggregate the base table data include a filter clause to specify the last one year of partitions.

C.

Create a new table that aggregates the base table data include a filter clause to specify the last year of partitions. Set up a scheduled query to recreate the new table every hour.

D.

Create a view to aggregate the base table data Include a filter clause to specify the last year of partitions.

Full Access
Question # 32

You currently use a SQL-based tool to visualize your data stored in BigQuery The data visualizations require the use of outer joins and analytic functions. Visualizations must be based on data that is no less than 4 hours old. Business users are complaining that the visualizations are too slow to generate. You want to improve the performance of the visualization queries while minimizing the maintenance overhead of the data preparation pipeline. What should you do?

A.

Create materialized views with the allow_non_incremental_definition option set to true for the visualization queries. Specify the max_3taleness parameter to 4 hours and the enable_refresh parameter to true. Reference the materialized views in the data visualization tool.

B.

Create views for the visualization queries. Reference the views in the data visualization tool.

C.

Create materialized views for the visualization queries. Use the incremental updates capability of BigQuery materialized views to handle

changed data automatically. Reference the materialized views in the data visualization tool.

D.

Create a Cloud Function instance to export the visualization query results as parquet files to a Cloud Storage bucket. Use Cloud Scheduler

to trigger the Cloud Function every 4 hours. Reference the parquet files in the data visualization tool.

Full Access
Go to page: