Month End Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Professional-Machine-Learning-Engineer Exam Dumps - Google Professional Machine Learning Engineer

Go to page:
Question # 17

You work for a bank and are building a random forest model for fraud detection. You have a dataset that

includes transactions, of which 1% are identified as fraudulent. Which data transformation strategy would likely improve the performance of your classifier?

A.

Write your data in TFRecords.

B.

Z-normalize all the numeric features.

C.

Oversample the fraudulent transaction 10 times.

D.

Use one-hot encoding on all categorical features.

Full Access
Question # 18

You are an AI architect at a popular photo-sharing social media platform. Your organization’s content moderation team currently scans images uploaded by users and removes explicit images manually. You want to implement an AI service to automatically prevent users from uploading explicit images. What should you do?

A.

Develop a custom TensorFlow model in a Vertex AI Workbench instance. Train the model on a dataset of manually labeled images. Deploy the model to a Vertex AI endpoint. Run periodic batch inference to identify inappropriate uploads and report them to the content moderation team.

B.

Train an image clustering model using TensorFlow in a Vertex AI Workbench instance. Deploy this model to a Vertex AI endpoint and configure it for online inference. Run this model each time a new image is uploaded to identify and block inappropriate uploads.

C.

Create a dataset using manually labeled images. Ingest this dataset into AutoML. Train an image classification model and deploy it to a Vertex AI endpoint. Integrate this endpoint with the image upload process to identify and block inappropriate uploads. Monitor predictions and periodically retrain the model.

D.

Send a copy of every user-uploaded image to a Cloud Storage bucket. Configure a Cloud Run function that triggers the Cloud Vision API to detect explicit content each time a new image is uploaded. Report the classifications to the content moderation team for review.

Full Access
Question # 19

You developed a custom model by using Vertex Al to predict your application's user churn rate You are using Vertex Al Model Monitoring for skew detection The training data stored in BigQuery contains two sets of features - demographic and behavioral You later discover that two separate models trained on each set perform better than the original model

You need to configure a new model mentioning pipeline that splits traffic among the two models You want to use the same prediction-sampling-rate and monitoring-frequency for each model You also want to minimize management effort What should you do?

A.

Keep the training dataset as is Deploy the models to two separate endpoints and submit two Vertex Al Model Monitoring jobs with appropriately selected feature-thresholds parameters

B.

Keep the training dataset as is Deploy both models to the same endpoint and submit a Vertex Al Model Monitoring job with a monitoring-config-from parameter that accounts for the model IDs and feature selections

C.

Separate the training dataset into two tables based on demographic and behavioral features Deploy the models to two separate endpoints, and submit two Vertex Al Model Monitoring jobs

D.

Separate the training dataset into two tables based on demographic and behavioral features. Deploy both models to the same endpoint and submit a Vertex Al Model Monitoring job with a monitoring-config-from parameter that accounts for the model IDs and training datasets

Full Access
Question # 20

You recently developed a wide and deep model in TensorFlow. You generated training datasets using a SQL script that preprocessed raw data in BigQuery by performing instance-level transformations of the data. You need to create a training pipeline to retrain the model on a weekly basis. The trained model will be used to generate daily recommendations. You want to minimize model development and training time. How should you develop the training pipeline?

A.

Use the Kubeflow Pipelines SDK to implement the pipeline Use the BigQueryJobop component to run the preprocessing script and the customTrainingJobop component to launch a Vertex Al training job.

B.

Use the Kubeflow Pipelines SDK to implement the pipeline. Use the dataflowpythonjobopcomponent to preprocess the data and the customTraining JobOp component to launch a Vertex Al training job.

C.

Use the TensorFlow Extended SDK to implement the pipeline Use the Examplegen component with the BigQuery executor to ingest the data the Transform component to preprocess the data, and the Trainer component to launch a Vertex Al training job.

D.

Use the TensorFlow Extended SDK to implement the pipeline Implement the preprocessing steps as part of the input_fn of the model Use the ExampleGen component with the BigQuery executor to ingest the data and the Trainer component to launch a Vertex Al training job.

Full Access
Question # 21

You work at a leading healthcare firm developing state-of-the-art algorithms for various use cases You have unstructured textual data with custom labels You need to extract and classify various medical phrases with these labels What should you do?

A.

Use the Healthcare Natural Language API to extract medical entities.

B.

Use a BERT-based model to fine-tune a medical entity extraction model.

C.

Use AutoML Entity Extraction to train a medical entity extraction model.

D.

Use TensorFlow to build a custom medical entity extraction model.

Full Access
Question # 22

You work for an online retailer. Your company has a few thousand short lifecycle products. Your company has five years of sales data stored in BigQuery. You have been asked to build a model that will make monthly sales predictions for each product. You want to use a solution that can be implemented quickly with minimal effort. What should you do?

A.

Use Prophet on Vertex Al Training to build a custom model.

B.

Use Vertex Al Forecast to build a NN-based model.

C.

Use BigQuery ML to build a statistical AR1MA_PLUS model.

D.

Use TensorFlow on Vertex Al Training to build a custom model.

Full Access
Question # 23

You are working on a binary classification ML algorithm that detects whether an image of a classified scanned document contains a company’s logo. In the dataset, 96% of examples don’t have the logo, so the dataset is very skewed. Which metrics would give you the most confidence in your model?

A.

F-score where recall is weighed more than precision

B.

RMSE

C.

F1 score

D.

F-score where precision is weighed more than recall

Full Access
Question # 24

You work for a gaming company that manages a popular online multiplayer game where teams with 6 players play against each other in 5-minute battles. There are many new players every day. You need to build a model that automatically assigns available players to teams in real time. User research indicates that the game is more enjoyable when battles have players with similar skill levels. Which business metrics should you track to measure your model’s performance? (Choose One Correct Answer)

A.

Average time players wait before being assigned to a team

B.

Precision and recall of assigning players to teams based on their predicted versus actual ability

C.

User engagement as measured by the number of battles played daily per user

D.

Rate of return as measured by additional revenue generated minus the cost of developing a new model

Full Access
Go to page: