Month End Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Professional-Machine-Learning-Engineer Exam Dumps - Google Professional Machine Learning Engineer

Go to page:
Question # 57

You are training and deploying updated versions of a regression model with tabular data by using Vertex Al Pipelines. Vertex Al Training Vertex Al Experiments and Vertex Al Endpoints. The model is deployed in a Vertex Al endpoint and your users call the model by using the Vertex Al endpoint. You want to receive an email when the feature data distribution changes significantly, so you can retrigger the training pipeline and deploy an updated version of your model What should you do?

A.

Use Vertex Al Model Monitoring Enable prediction drift monitoring on the endpoint. and specify a notification email.

B.

In Cloud Logging, create a logs-based alert using the logs in the Vertex Al endpoint. Configure Cloud Logging to send an email when the alert is triggered.

C.

In Cloud Monitoring create a logs-based metric and a threshold alert for the metric. Configure Cloud Monitoring to send an email when the alert is triggered.

D.

Export the container logs of the endpoint to BigQuery Create a Cloud Function to run a SQL query over the exported logs and send an email. Use Cloud Scheduler to trigger the Cloud Function.

Full Access
Question # 58

You work for an advertising company and want to understand the effectiveness of your company's latest advertising campaign. You have streamed 500 MB of campaign data into BigQuery. You want to query the table, and then manipulate the results of that query with a pandas dataframe in an Al Platform notebook. What should you do?

A.

Use Al Platform Notebooks' BigQuery cell magic to query the data, and ingest the results as a pandas dataframe

B.

Export your table as a CSV file from BigQuery to Google Drive, and use the Google Drive API to ingest the file into your notebook instance

C.

Download your table from BigQuery as a local CSV file, and upload it to your Al Platform notebook instance Use pandas. read_csv to ingest the file as a pandas dataframe

D.

From a bash cell in your Al Platform notebook, use the bq extract command to export the table as a CSV file to Cloud Storage, and then use gsutii cp to copy the data into the notebook Use pandas. read_csv to ingest the file as a pandas dataframe

Full Access
Question # 59

You work for a social media company. You need to detect whether posted images contain cars. Each training example is a member of exactly one class. You have trained an object detection neural network and deployed the model version to Al Platform Prediction for evaluation. Before deployment, you created an evaluation job and attached it to the Al Platform Prediction model version. You notice that the precision is lower than your business requirements allow. How should you adjust the model's final layer softmax threshold to increase precision?

A.

Increase the recall

B.

Decrease the recall.

C.

Increase the number of false positives

D.

Decrease the number of false negatives

Full Access
Question # 60

You work at a bank. You need to develop a credit risk model to support loan application decisions You decide to implement the model by using a neural network in TensorFlow Due to regulatory requirements, you need to be able to explain the models predictions based on its features When the model is deployed, you also want to monitor the model's performance overtime You decided to use Vertex Al for both model development and deployment What should you do?

A.

Use Vertex Explainable Al with the sampled Shapley method, and enable Vertex Al Model Monitoring to

check for feature distribution drift.

B.

Use Vertex Explainable Al with the sampled Shapley method, and enable Vertex Al Model Monitoring to

check for feature distribution skew.

C.

Use Vertex Explainable Al with the XRAI method, and enable Vertex Al Model Monitoring to check for feature distribution drift.

D.

Use Vertex Explainable Al with the XRAI method and enable Vertex Al Model Monitoring to check for feature distribution skew.

Full Access
Question # 61

You work for a toy manufacturer that has been experiencing a large increase in demand. You need to build an ML model to reduce the amount of time spent by quality control inspectors checking for product defects. Faster defect detection is a priority. The factory does not have reliable Wi-Fi. Your company wants to implement the new ML model as soon as possible. Which model should you use?

A.

AutoML Vision model

B.

AutoML Vision Edge mobile-versatile-1 model

C.

AutoML Vision Edge mobile-low-latency-1 model

D.

AutoML Vision Edge mobile-high-accuracy-1 model

Full Access
Question # 62

You have a functioning end-to-end ML pipeline that involves tuning the hyperparameters of your ML model using Al Platform, and then using the best-tuned parameters for training. Hypertuning is taking longer than expected and is delaying the downstream processes. You want to speed up the tuning job without significantly compromising its effectiveness. Which actions should you take?

Choose 2 answers

A.

Decrease the number of parallel trials

B.

Decrease the range of floating-point values

C.

Set the early stopping parameter to TRUE

D.

Change the search algorithm from Bayesian search to random search.

E.

Decrease the maximum number of trials during subsequent training phases.

Full Access
Question # 63

You are implementing a batch inference ML pipeline in Google Cloud. The model was developed using TensorFlow and is stored in SavedModel format in Cloud Storage You need to apply the model to a historical dataset containing 10 TB of data that is stored in a BigQuery table How should you perform the inference?

A.

Export the historical data to Cloud Storage in Avro format. Configure a Vertex Al batch prediction job to generate predictions for the exported data.

B.

Import the TensorFlow model by using the create model statement in BigQuery ML Apply the historical data to the TensorFlow model.

C.

Export the historical data to Cloud Storage in CSV format Configure a Vertex Al batch prediction job to generate predictions for the exported data.

D.

Configure a Vertex Al batch prediction job to apply the model to the historical data in BigQuery

Full Access
Question # 64

During batch training of a neural network, you notice that there is an oscillation in the loss. How should you adjust your model to ensure that it converges?

A.

Increase the size of the training batch

B.

Decrease the size of the training batch

C.

Increase the learning rate hyperparameter

D.

Decrease the learning rate hyperparameter

Full Access
Go to page: