Month End Special Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: scxmas70

Professional-Machine-Learning-Engineer Exam Dumps - Google Professional Machine Learning Engineer

Go to page:
Question # 33

You are developing an ML model to predict house prices. While preparing the data, you discover that an important predictor variable, distance from the closest school, is often missing and does not have high variance. Every instance (row) in your data is important. How should you handle the missing data?

A.

Delete the rows that have missing values.

B.

Apply feature crossing with another column that does not have missing values.

C.

Predict the missing values using linear regression.

D.

Replace the missing values with zeros.

Full Access
Question # 34

You recently deployed a pipeline in Vertex Al Pipelines that trains and pushes a model to a Vertex Al endpoint to serve real-time traffic. You need to continue experimenting and iterating on your pipeline to improve model performance. You plan to use Cloud Build for CI/CD You want to quickly and easily deploy new pipelines into production and you want to minimize the chance that the new pipeline implementations will break in production. What should you do?

A.

Set up a CI/CD pipeline that builds and tests your source code If the tests are successful use the Google Cloud console to upload the built container to Artifact Registry and upload the compiled pipeline to Vertex Al Pipelines.

B.

Set up a CI/CD pipeline that builds your source code and then deploys built artifacts into a pre-production environment Run unit tests in the pre-production environment If the tests are successful deploy the pipeline to production.

C.

Set up a CI/CD pipeline that builds and tests your source code and then deploys built artifacts into a pre-production environment. After a successful pipeline run in the pre-production environment deploy the pipeline to production

D.

Set up a CI/CD pipeline that builds and tests your source code and then deploys built arrets into a pre-production environment After a successful pipeline run in the pre-production environment, rebuild the source code, and deploy the artifacts to production

Full Access
Question # 35

You are creating a deep neural network classification model using a dataset with categorical input values. Certain columns have a cardinality greater than 10,000 unique values. How should you encode these categorical values as input into the model?

A.

Convert each categorical value into an integer value.

B.

Convert the categorical string data to one-hot hash buckets.

C.

Map the categorical variables into a vector of boolean values.

D.

Convert each categorical value into a run-length encoded string.

Full Access
Question # 36

You work on the data science team for a multinational beverage company. You need to develop an ML model to predict the company’s profitability for a new line of naturally flavored bottled waters in different locations. You are provided with historical data that includes product types, product sales volumes, expenses, and profits for all regions. What should you use as the input and output for your model?

A.

Use latitude, longitude, and product type as features. Use profit as model output.

B.

Use latitude, longitude, and product type as features. Use revenue and expenses as model outputs.

C.

Use product type and the feature cross of latitude with longitude, followed by binning, as features. Use profit as model output.

D.

Use product type and the feature cross of latitude with longitude, followed by binning, as features. Use revenue and expenses as model outputs.

Full Access
Question # 37

You have written unit tests for a Kubeflow Pipeline that require custom libraries. You want to automate the execution of unit tests with each new push to your development branch in Cloud Source Repositories. What should you do?

A.

Write a script that sequentially performs the push to your development branch and executes the unit tests on Cloud Run

B.

Using Cloud Build, set an automated trigger to execute the unit tests when changes are pushed to your development branch.

C.

Set up a Cloud Logging sink to a Pub/Sub topic that captures interactions with Cloud Source Repositories Configure a Pub/Sub trigger for Cloud Run, and execute the unit tests on Cloud Run.

D.

Set up a Cloud Logging sink to a Pub/Sub topic that captures interactions with Cloud Source Repositories. Execute the unit tests using a Cloud Function that is triggered when messages are sent to the Pub/Sub topic

Full Access
Question # 38

You developed a Vertex Al pipeline that trains a classification model on data stored in a large BigQuery table. The pipeline has four steps, where each step is created by a Python function that uses the KubeFlow v2 API The components have the following names:

You launch your Vertex Al pipeline as the following:

You perform many model iterations by adjusting the code and parameters of the training step. You observe high costs associated with the development, particularly the data export and preprocessing steps. You need to reduce model development costs. What should you do?

A.

B.

C.

D.

Full Access
Question # 39

You are developing an ML model to identify your company s products in images. You have access to over one million images in a Cloud Storage bucket. You plan to experiment with different TensorFlow models by using Vertex Al Training You need to read images at scale during training while minimizing data I/O bottlenecks What should you do?

A.

Load the images directly into the Vertex Al compute nodes by using Cloud Storage FUSE Read the images by using the tf .data.Dataset.from_tensor_slices function.

B.

Create a Vertex Al managed dataset from your image data Access the aip_training_data_uri

environment variable to read the images by using the tf. data. Dataset. Iist_flies function.

C.

Convert the images to TFRecords and store them in a Cloud Storage bucket Read the TFRecords by using the tf. ciata.TFRecordDataset function.

D.

Store the URLs of the images in a CSV file Read the file by using the tf.data.experomental.CsvDataset function.

Full Access
Question # 40

You are building an ML model to predict trends in the stock market based on a wide range of factors. While exploring the data, you notice that some features have a large range. You want to ensure that the features with the largest magnitude don’t overfit the model. What should you do?

A.

Standardize the data by transforming it with a logarithmic function.

B.

Apply a principal component analysis (PCA) to minimize the effect of any particular feature.

C.

Use a binning strategy to replace the magnitude of each feature with the appropriate bin number.

D.

Normalize the data by scaling it to have values between 0 and 1.

Full Access
Go to page: